Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Study of effect of inserted pentacene layer in ITO/P(VDF-TrFE)/ α-NPD/Au capacitor using electric-field-induced optical second-harmonic generation and displacement current

Identifieur interne : 000035 ( Main/Repository ); précédent : 000034; suivant : 000036

Study of effect of inserted pentacene layer in ITO/P(VDF-TrFE)/ α-NPD/Au capacitor using electric-field-induced optical second-harmonic generation and displacement current

Auteurs : RBID : Pascal:14-0052622

Descripteurs français

English descriptors

Abstract

The effect of inserted pentacene layers on the interface optimization was investigated in the indium-tin oxide (ITO)/Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))/N, N'-bis(1-naphthyl)-N,N'-diphenyl-1, 1'-biphenyl-4,4'-diamine (α-NPD)/Au capacitors, by using displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement. Results show that the inserted pentacene layer between the α-NPD and P(VDF-TrFE) layers effectively improves the contact between the semiconductor and the ferroelectric P(VDF-TrFE) and it further enhances dipolar switching, resulting in three peaks in the DCM, while the insertion of a pentacene layer between the α-NPD and the Au electrode can effectively acquire holes from the Au electrode to be conductive, only leading to peak shift in the DCM with only two peaks. It is concluded that pentacene is a good candidate available for the interface optimization of organic devices.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0052622

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Study of effect of inserted pentacene layer in ITO/P(VDF-TrFE)/ α-NPD/Au capacitor using electric-field-induced optical second-harmonic generation and displacement current</title>
<author>
<name>XIAOJIN CUI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 152-8552</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>DAI TAGUCHI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 152-8552</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Manaka, Takaaki" uniqKey="Manaka T">Takaaki Manaka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 152-8552</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI PAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Iwamoto, Mitsumasa" uniqKey="Iwamoto M">Mitsumasa Iwamoto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 152-8552</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0052622</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0052622 INIST</idno>
<idno type="RBID">Pascal:14-0052622</idno>
<idno type="wicri:Area/Main/Corpus">000147</idno>
<idno type="wicri:Area/Main/Repository">000035</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biphenyl derivatives</term>
<term>Capacitor</term>
<term>Current mode</term>
<term>Displacement measurement</term>
<term>Doped materials</term>
<term>Electric current measurement</term>
<term>Electric field effect</term>
<term>Ferroelectric materials</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Interface</term>
<term>Optical harmonic generation</term>
<term>Optimization</term>
<term>Organic electronics</term>
<term>Pentacene</term>
<term>Second harmonic generation</term>
<term>Semiconductor materials</term>
<term>Switching</term>
<term>Tin addition</term>
<term>Trifluoroethylene copolymer</term>
<term>Vinylidene fluoride copolymer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition étain</term>
<term>Condensateur</term>
<term>Effet champ électrique</term>
<term>Génération harmonique optique</term>
<term>Génération harmonique 2</term>
<term>Optimisation</term>
<term>Couche ITO</term>
<term>Mesure déplacement</term>
<term>Mesure courant électrique</term>
<term>Mode courant</term>
<term>Commutation</term>
<term>Electronique organique</term>
<term>Pentacène</term>
<term>Oxyde d'indium</term>
<term>Vinylidène fluorure copolymère</term>
<term>Ethylène(trifluoro) copolymère</term>
<term>Interface</term>
<term>Dérivé du biphényle</term>
<term>Semiconducteur</term>
<term>Ferroélectrique</term>
<term>Matériau dopé</term>
<term>4265K</term>
<term>7784</term>
<term>ITO</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of inserted pentacene layers on the interface optimization was investigated in the indium-tin oxide (ITO)/Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))/N, N'-bis(1-naphthyl)-N,N'-diphenyl-1, 1'-biphenyl-4,4'-diamine (α-NPD)/Au capacitors, by using displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement. Results show that the inserted pentacene layer between the α-NPD and P(VDF-TrFE) layers effectively improves the contact between the semiconductor and the ferroelectric P(VDF-TrFE) and it further enhances dipolar switching, resulting in three peaks in the DCM, while the insertion of a pentacene layer between the α-NPD and the Au electrode can effectively acquire holes from the Au electrode to be conductive, only leading to peak shift in the DCM with only two peaks. It is concluded that pentacene is a good candidate available for the interface optimization of organic devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Study of effect of inserted pentacene layer in ITO/P(VDF-TrFE)/ α-NPD/Au capacitor using electric-field-induced optical second-harmonic generation and displacement current</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XIAOJIN CUI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DAI TAGUCHI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MANAKA (Takaaki)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WEI PAN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>IWAMOTO (Mitsumasa)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama</s1>
<s2>Meguro-ku, Tokyo 152-8552</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>537-542</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000501689300250</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0052622</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of inserted pentacene layers on the interface optimization was investigated in the indium-tin oxide (ITO)/Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))/N, N'-bis(1-naphthyl)-N,N'-diphenyl-1, 1'-biphenyl-4,4'-diamine (α-NPD)/Au capacitors, by using displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement. Results show that the inserted pentacene layer between the α-NPD and P(VDF-TrFE) layers effectively improves the contact between the semiconductor and the ferroelectric P(VDF-TrFE) and it further enhances dipolar switching, resulting in three peaks in the DCM, while the insertion of a pentacene layer between the α-NPD and the Au electrode can effectively acquire holes from the Au electrode to be conductive, only leading to peak shift in the DCM with only two peaks. It is concluded that pentacene is a good candidate available for the interface optimization of organic devices.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F09</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B65K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70G84</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Condensateur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Capacitor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Condensador</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Effet champ électrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electric field effect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Efecto campo eléctrico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Génération harmonique optique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Optical harmonic generation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Génération harmonique 2</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Second harmonic generation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Mesure déplacement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Displacement measurement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Medición desplazamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Mesure courant électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electric current measurement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mode courant</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Current mode</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modo corriente</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Commutation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Switching</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Conmutación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Electronique organique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Organic electronics</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Electrónica orgánica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Pentacène</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Pentacene</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Pentaceno</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Vinylidène fluorure copolymère</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Vinylidene fluoride copolymer</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Vinilideno fluoruro copolímero</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Ethylène(trifluoro) copolymère</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Trifluoroethylene copolymer</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Etileno(trifluoro) copolímero</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Interface</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Interface</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Interfase</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Dérivé du biphényle</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Biphenyl derivatives</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Bifenilo derivado</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Ferroélectrique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Ferroelectric materials</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Material ferroeléctrico</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>4265K</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>7784</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>062</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000035 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000035 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0052622
   |texte=   Study of effect of inserted pentacene layer in ITO/P(VDF-TrFE)/ α-NPD/Au capacitor using electric-field-induced optical second-harmonic generation and displacement current
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024